Abstract

Let Z be a normal subgroup of a finite group G , let ??Irr(Z) be an irreducible complex character of Z , and let p be a prime number. If p does not divide the integers ?(1)/?(1) for all ??Irr(G) lying over ? , then we prove that the Sylow p -subgroups of G/Z are abelian. This theorem, which generalizes the Gluck-Wolf Theorem to arbitrary finite groups, is one of the principal obstacles to proving the celebrated Brauer Height Zero Conjecture

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.