Abstract

The remarkable advances in SAT solving achieved in the last years have allowed to use this technology to solve many real-world applications, such as planning, formal verification and cryptography, among others. Interestingly, these industrial SAT problems are commonly believed to be easier than classical random SAT formulas, but estimating their actual hardness is still a very challenging question, which in some cases even requires to solve them. In this context, realistic pseudo-industrial random SAT generators have emerged with the aim of reproducing the main features of these application problems to better understand the success of those SAT solving techniques on them. In this work, we present a model to estimate the temperature of real-world SAT instances. This temperature represents the degree of distortion into the expected structure of the formula, from highly structured benchmarks (more similar to real-world SAT instances) to the complete absence of structure (observed in the classical random SAT model). Our solution is based on the popularity–similarity random model for SAT, which has been recently presented to reproduce two crucial features of application SAT benchmarks: scale-free and community structures. This model is able to control the hardness of the generated formula by introducing some randomizations in the expected structure. Using our regression model, we observe that the estimated temperature of the applications benchmarks used in the last SAT Competitions correlates to their hardness in most of the cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.