Abstract

We devise a scheme to characterize tunneling of an excess electron shared by a pair of tunnel-coupled dangling bonds on a silicon surface---effectively a two-level system. Theoretical estimates show that the tunneling should be highly coherent but too fast to be measured by any conventional techniques. Our approach is instead to measure the time-averaged charge distribution of our dangling-bond pair by a capacitively coupled atomic-force-microscope tip in the presence of both a surface-parallel electrostatic potential bias between the two dangling bonds and a tunable midinfrared laser capable of inducing Rabi oscillations in the system. With a nonresonant laser, the time-averaged charge distribution in the dangling-bond pair is asymmetric as imposed by the bias. However, as the laser becomes resonant with the coherent electron tunneling in the biased pair the theory predicts that the time-averaged charge distribution becomes symmetric. This resonant symmetry effect should not only reveal the tunneling rate, but also the nature and rate of decoherence of single-electron dynamics in our system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.