Abstract

Enterococcus cecorum (EC) has been associated with septicemia and early mortality in broiler chickens. There is limited research investigating the pathogenicity of EC field strains obtained from affected birds. The purpose of this study was to evaluate the effect of in-ovo administration into the amnion with different EC field isolates at d 18 of embryogenesis (DOE18). In Exp 1, 7 EC field isolates alone or in combination (EC1-EC3, EC4-EC5, EC6, and EC7) were selected based on phenotypic characteristics and evaluated at different concentrations (1×102, 1×104, and 1×106 CFU/200 µL/embryo) to assess the impact on early performance and macroscopic lesions. Three isolates (n=3; EC2, EC5, EC7) were selected for additional evaluation based on the significant (P < 0.05) BWG reduction (d 0-21) compared to the negative control (NC) and the presence of macroscopic lesions observed during posting sessions at d 14 and d 21. An additional isolate associated with enterococcal spondylitis was included in Exp 2 (EC11B). Treatment groups for Exp 2 include: 1) NC, 2) EC2, 3) EC5, 4) EC7, and 5) EC11B (n=90-120/embryos/group). Groups 2 to 5 were challenged at 1×102 CFU/200 µL/embryo by in-ovo injection into the amnion at DOE18. Chicks were placed in battery cages for the duration of the study (21 d), and pen weights were recorded at d 0, d 7, d 14, and d 21 to calculate average BW and BWG. At d 14 and d 21 posthatch, liver, spleen, free thoracic vertebrae (FTV), and femoral head (FH) were aseptically collected to enumerate Enterococcus spp. using Chromagar Orientation as the selective media. Cecal contents were collected at d 21 to evaluate the effect of EC challenge on the cecal microbiome composition. There was a significant (P < 0.05) reduction in BW at d 21, and BWG from d 14 to 21 and d 0 to 21, for EC7 and EC11B. Enterococcus cecorum was recovered from the FTV of all challenged groups at d 14 and d 21. The most representative lesions were pericarditis, hydropericardium, focal heart necrosis, and FH osteomyelitis. However, lesions were not uniform across challenged groups or ages (d 14 and d 21). Alpha diversity of the cecal contents was markedly lower in EC5 and EC11B compared to all treatment groups suggesting that EC exposure during late embryogenesis affect the cecal microbiome up to 21 d posthatch. Additionally, these results highlight the differences in pathogenicity of EC strains isolated from field cases and suggest that hatchery exposure to EC during late embryogenesis is a potential route of introduction into a flock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.