Abstract

AbstractThe materials that are receiving the most attention in photoelectrochemical water splitting are metallic nanoparticle electrocatalysts (np‐EC) attached to the surface of a semiconductor (SC) light absorber. In these multicomponent systems, the interface between the semiconductor and electrocatalysts critically affects performance. However, the np‐EC/SC interface remains poorly understood as it is complex on atomic scales, dynamic under reaction conditions, and inaccessible to direct experimental probes. This contribution sheds light on how the electrocatalyst/semiconductor interface evolves under reaction conditions by investigating the behavior of nickel electrocatalysts (as nanoparticles and films) deposited on silicon semiconductors. Rigorous electrochemical experiments, interfacial atomistic characterization, and computational modeling are combined to demonstrate critical links between the atomistic features of the interface and the overall performance. It is shown that electrolyte‐induced atomistic changes to the interface lead to (1) modulation of the charge carrier fluxes and a dramatic decrease in the electron/hole recombination rates and (2) a change in the barrier height of the interface. Furthermore, the critical roles of nonidealities and electrocatalyst coverage due to interfacial geometry are explored. Each of these factors must be considered to optimize the design of metal/semiconductor interfaces which are broadly applicable to photoelectrocatalysis and photovoltaic research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.