Abstract

Alginate was studied as a degradable nerve guidance scaffold material in vitro and in vivo. In vitro degradation rates were determined using rheology to measure the change in shear modulus vs time. The shear modulus decreased from 155 kPa to 5 kPa within 2 days; however, alginate samples maintained their superficial geometry for over 28 days. The degradation behavior was supported by materials characterization data showing alginate consisted of high internal surface area (400 m2 /g), which likely facilitated the release of cross-linking cations resulting in the rapid decrease in shear modulus. To assess the degradation rate in vivo, multilumen scaffolds were fabricated using a fiber templating technique. The scaffolds were implanted in a 2-mm-long T3 full transection rodent spinal cord lesion model for 14 days. Although there was some evidence of axon guidance, in general, alginate scaffolds degraded before axons could grow over the 2-mm-long lesion. Enabling alginate-based scaffolds for nerve repair will likely require approaches to slow its degradation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 611-619, 2016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.