Abstract
This study aimed to compare the acute effects of static stretching (SS) and proprioceptive neuromuscular facilitation (PNF) stretching on hamstrings flexibility and shear modulus. Sixteen recreationally active young volunteers participated in a randomized cross-over study. Participants underwent an aerobic warm-up (WU), followed by either SS or PNF stretching. Range of motion (RoM) during passive straight leg raise and active knee extension, as well as shear modulus of the biceps femoris (BF) and semitendinosus (ST) muscles, were measured at baseline, post-WU, and post-stretching. Both stretching techniques significantly increased RoM, with no differences observed between SS and PNF (p < 0.001; η2 = 0.59-0.68). However, only PNF stretching resulted in a significant decrease in BF shear modulus (time×stretching type interaction: p = 0.045; η2 = 0.19), indicating reduced muscle stiffness. No changes in ST shear modulus were observed after either stretching technique. There was no significant correlation between changes in RoM and shear modulus, suggesting that the increase in RoM was predominantly due to changes in stretch tolerance rather than mechanical properties of the muscles. These findings suggest that both SS and PNF stretching can effectively improve hamstring flexibility, but PNF stretching may additionally reduce BF muscle stiffness. The study highlights the importance of considering individual muscle-specific responses to stretching techniques and provides insights into the mechanisms underpinning acute increases in RoM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.