Abstract

The concept of strong admissibility plays an important role in dialectical proof procedures for grounded semantics allowing, as it does, concise proofs that an argument belongs to the grounded extension without having necessarily to construct this extension in full. One consequence of this property is that strong admissibility (in contrast to grounded semantics) ceases to be a unique status semantics. In fact it is straightforward to construct examples for which the number of distinct strongly admissible sets is exponential in the number of arguments. We are interested in characterizing properties of collections of strongly admissible sets in the sense that any system describing the strongly admissible sets of an argument framework must satisfy particular criteria. In terms of previous studies, our concern is the signature and with conditions ensuring realizability. The principal result is to demonstrate that a system of sets describes the strongly admissible sets of some framework if and only if that system has the property of being decomposable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.