Abstract
ABSTRACT Induced seismicity predominantly occurs along faults that are optimally oriented to the local principal compressive stress direction, and the characterization of these stress orientations is an important component of understanding seismic hazards. The seismicity rate in southern Kansas rapidly increased in 2013 primarily due to the disposal of large volumes of wastewater into the Arbuckle Group. Previously, local stress orientations in this area were poorly constrained, which limited our understanding of the complex faulting and diverse earthquake mechanisms in this region. We use shear-wave splitting and focal mechanism inversion techniques to create multiple, independent estimates of maximum horizontal stress directions (SHmax) and their spatial variation across the study area. We then create an integrated model of stress orientations for southern Kansas and northern Oklahoma using our local results in conjunction with previous, regional stress orientation estimates. We find that SHmax in both southern Kansas and central Oklahoma exhibits an east-northeast (∼N78° E) orientation, and these regions bound a northeast (∼N59° E) rotation within a ∼20 km area in northern Oklahoma near the Nemaha ridge.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have