Abstract

AbstractPartially saturated compacted-sand specimens were characterized by using three-dimensional (3D) image registration of dual-modal (neutron and X-ray) tomography data. Neutron and X-ray imaging provide complementary information for precisely identifying the three phases (silica sand, air, and water) of a compacted sand specimen that is partially saturated. Neutron tomography provides high contrast of the water phase, whereas X-ray tomography provides high contrast of the silica sand phase due to different fundamental interaction mechanisms of neutron and X-ray with matters. X-ray interacts with the electron cloud surrounding the nucleus, whereas neutron radiation interacts with the nucleus of an atom. In this paper, a computational technique was developed to unify digital images of dual-modal data obtained at different image resolution and specimen orientations based on the maximization of the normalized mutual information to combine the information from the water phase inferred from a neutron image...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call