Abstract
Let $(R,m)$ be a commutative Noetherian local ring. It is known that R is Cohen-Macaulay if there exists either a nonzero Cohen-Macaulay R-module of finite projective dimension or a nonzero finitely generated R-module of finite injective dimension. In this article, we will prove the complete intersection analogues of these facts. Also, by using complete intersection homological dimensions, we will characterize local rings which are either regular, complete intersection or Gorenstein.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have