Abstract
A ubiquitous source of uncertainty in fire modeling is specifying the proper heat release rate (HRR) for the fuel packages of interest. An inverse HRR calculation method is presented to determine an inverse HRR solution that satisfies measured temperature data. The methodology uses a predictor-corrected method and the Consolidated Model of Fire and Smoke Transport (CFAST) zone model to calculate hot gas layer (HGL) temperatures in single compartment configurations. The inverse method runs at super-real-time speeds while calculating an inverse HRR solution that reasonably matches the original HRR curve. Examples of the inverse method are demonstrated by using a multiple step HRR case, complex HRR curves, experimental temperature data with a constant HRR, and a case with an experimentally measured HRR. In principle, the methodology can be applied using any reasonably accurate fire model to invert for the HRR.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have