Abstract

Lithium ion batteries are among the most promising electrochemical storage systems currently available. However, even though their high values of specific energy and energy density make them suitable for the development of new research approaches to counteract the global energy consumption, its diffusion is still limited in several sectors because of the high costs and safety problems. Five different Lithium ion cells of similar energy size but different chemical composition have been studied here, with the aim of pinpointing the fundamental characteristics of each battery. A comprehensive knowledge of these technologies can help finding out the critical parameters indicating dangerous situations. An automated test system based on the synchronous measurement of battery voltage, current and temperature has been employed in this comparative study. The system allows for testing the cells with a huge variety of protocols, from the standard charge cycle to the more complex power control test. Experimental results highlight that, for example, the LiNiCoO2 and the Lithium Polymer batteries outperform for their energy density and specific energy while the LiFePO4 show the highest versatility, efficiency and safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call