Abstract

Sparse matrix-vector multiplication (SpMV) is a widely used kernel in scientific applications as well as data analytics. Many GPU implementations of SpMV have been proposed, proposing different sparse matrix representations. However, no sparse matrix representation is consistently superior, and the best representation varies for sparse matrices with different sparsity patterns. In this paper we study four popular sparse representations implemented in the NVIDIA cuSPARSE library: CSR, ELL, COO and a hybrid ELL-COO scheme. We analyze statistical features of a dataset of 27 matrices, covering a wide spectrum of sparsity features, and attempt to correlate SpMV performance with each representation with simple aggregate metrics of the matrices. We present some insights on the correlation between matrix features and the best choice for sparse matrix representation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.