Abstract

Purpose As the limited energy of wireless sensor networks (WSNs), energy-efficient data-gathering algorithms are required. This paper proposes a compressive data-gathering algorithm based on double sparse structure dictionary learning (DSSDL). The purpose of this paper is to reduce the energy consumption of WSNs. Design/methodology/approach The historical data is used to construct a sparse representation base. In the dictionary-learning stage, the sparse representation matrix is decomposed into the product of double sparse matrices. Then, in the update stage of the dictionary, the sparse representation matrix is orthogonalized and unitized. The finally obtained double sparse structure dictionary is applied to the compressive data gathering in WSNs. Findings The dictionary obtained by the proposed algorithm has better sparse representation ability. The experimental results show that, the sparse representation error can be reduced by at least 3.6% compared with other dictionaries. In addition, the better sparse representation ability makes the WSNs achieve less measurement times under the same accuracy of data gathering, which means more energy saving. According to the results of simulation, the proposed algorithm can reduce the energy consumption by at least 2.7% compared with other compressive data-gathering methods under the same data-gathering accuracy. Originality/value In this paper, the double sparse structure dictionary is introduced into the compressive data-gathering algorithm in WSNs. The experimental results indicate that the proposed algorithm has good performance on energy consumption and sparse representation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call