Abstract
It is well-known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. Here we prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free virtually nilpotent groups. By contrast, we exhibit various examples of Cayley graphs of finitely presented groups (e.g. SL(4,Z)) which fail to have this property, answering a question of Benjamini, Ellis, and Georgakopoulos. Answering a question of Cornulier, we also construct a continuum of non pairwise isometric large-scale simply connected locally finite vertex-transitive graphs. This question was motivated by the fact that large-scale simply connected Cayley graphs are precisely Cayley graphs of finitely presented groups and therefore have countably many isometric classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.