Abstract

We prove a quantitative, finitary version of Trofimov’s result that a connected, locally finite vertex-transitive graph Γ of polynomial growth admits a quotient with finite fibres on which the action of Aut(Γ) is virtually nilpotent with finite vertex stabilisers. We also present some applications. We show that a finite, connected vertex-transitive graph Γ of large diameter admits a quotient with fibres of small diameter on which the action of Aut(Γ) is virtually abelian with vertex stabilisers of bounded size. We also show that Γ has moderate growth in the sense of Diaconis and Saloff-Coste, which is known to imply that the mixing and relaxation times of the lazy random walk on Γ are quadratic in the diameter. These results extend results of Breuillard and the second author for finite Cayley graphs of large diameter. Finally, given a connected, locally finite vertex-transitive graph Γ exhibiting polynomial growth at a single, sufficiently large scale, we describe its growth at subsequent scales, extending a result of Tao and an earlier result of our own for Cayley graphs. In forthcoming work we will give further applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call