Abstract

The SARS-CoV-2 pandemic has underscored the necessity for functional transgenic animal models for testing. Mouse lines with overexpression of the human receptor ACE2 serve as the common animal model to study COVID-19 infection. Overexpression of ACE2 under a strong ubiquitous promoter facilitates convenient and sensitive testing of COVID-19 pathology. We performed pronuclear microinjections using a 5kb CAG-ACE2 linear transgene construct and identified three founder lines with 140, 72, and 73 copies, respectively. Two of these lines were further analyzed for ACE2 expression profiles and sensitivity to SARS-CoV-2 infection. Both lines expressed ACE2 in all organs analyzed. Embryonic fibroblast cell lines derived from transgenic embryos demonstrated severe cytopathic effects following infection, even at low doses of SARS-CoV-2 (0,1-1.0 TCID50). Infected mice from the two lines began to show COVID-19 clinical signs three days post-infection and succumbed between days 4 and 7. Histological examination of lung tissues from terminally ill mice revealed severe pathological alterations. To further characterize the integration site in one of the lines, we applied nanopore sequencing combined with Cas9 enrichment to examine the internal transgene concatemer structure. Oxford Nanopore sequencing (ONT) is becoming the gold standard for transgene insert characterization, but it is relatively inefficient without targeted region enrichment. We digested genomic DNA with Cas9 and gRNA against the ACE2 transgene to create ends suitable for ONT adapter ligation. ONT data analysis revealed that most of the transgene copies were arranged in a head-to-tail configuration, with palindromic junctions being rare. We also detected occasional plasmid backbone fragments within the concatemer, likely co-purified during transgene gel extraction, which is a common occurrence in pronuclear microinjections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.