Abstract

It is challenging to distinguish embryos with a balanced translocation karyotype from a normal karyotype by existing conventional genetic testing methods. However, in germ-cell gamete generation, chromosome exchange and separation through cell meiosis form a different proportion of unbalanced gametes. Adverse birth events may occur, such as repeated miscarriages and fetal birth defects. In this study, the exact breakpoints of structural variation (SV) from two balanced translocation carrier families by using Nanopore long reads sequencing technology were obtained, and haplotype analysis and Sanger verified the accuracy of the detection results, confirming the application value of the Nanopore sequencing technology in the detection of balanced translocation before embryo implantation. Nanopore long-read sequencing was performed to find the precise breakpoint of chromosome-balanced translocation carriers. The breakpoints were subsequently verified by designing primers across the breakpoints and Sanger sequencing. Haplotype linkage analysis of SNPs which can be linked by a read block of families around the breakpoint regions was followed. After frozen (-thawed) embryo transfer (FET), prenatal cytogenetic analysis of amniotic fluid cells confirmed the predicted karyotypes from the transferred embryos. The presence of breakpoints was detected in three embryos of patient 1. No breakpoints were detected in either embryo of patient 2. One balanced translocated embryo from patient 1 and one normal euploid embryo from patient 2 were transplanted back into the patients, and amniotic fluid cells were analyzed for the karyotype of fetuses. The results were entirely consistent with the fetal karyotype. And through late follow-up, both patients successfully had a live birth fetus. The breakpoint location of the balanced chromosome translocation can be accurately found by Nanopore sequencing. The haplotype of carriers can be successfully constructed by Nanopore and sanger sequencing confirmed that the results were accurate. This is very advantageous for preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) detection in the families without proband.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call