Abstract

The equal channel angular pressing (ECAP) technique is now recognised for achieving very significant grain refinement of ultra-fine grained materials which, at present produce unique mechanical properties. This study reports the results of the tensile tests and the microstructural analysis carried out on the specimens of ultra-fine grained (UFG) copper processed by ECAP technique at room temperature using a die with a 126 o between the die channels. The copper samples used in this work were subjected to six and twelve passes during the ECAP processing. Tensile tests were conducted for samples cut out in two different directions; in the parallel and perpendicular direction at room temperature to evaluate the mechanical properties after the ECAP at these two directions. The microstructural characterization was carried out using optical electron microscope (OEM) and scanning electronic microscope (SEM). The results show ECAP technique introducing significant grain refinement and produced ultrafine grains in copper and there is a potential for achieving high ductility in the copper alloy after processing. The tested sample is characterized by significant differences of strength properties depending on the direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.