Abstract
In this paper, we study a class of Borel measures on [Formula: see text] that arises as the class of representing measures of Herglotz-Nevanlinna functions. In particular, we study product measures within this class where products with the Lebesgue measures play a special role. Hence, we give several characterizations of the [Formula: see text]-dimensional Lebesgue measure among all such measures and characterize all product measures that appear in this class of measures. Furthermore, analogous results for the class of positive Borel measures on the unit poly-torus with vanishing mixed Fourier coefficients are also presented, and the relation between the two classes of measures with regard to the obtained results is discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have