Abstract

This paper is mainly devoted to the study of the so-called full Lipschitzian stability of local solutions to finite-dimensional parameterized problems of constrained optimization, which has been well recognized as a very important property from the viewpoints of both optimization theory and its applications. Based on second-order generalized differential tools of variational anal- ysis, we obtain necessary and sufficient conditions for fully stable local minimizers in general classes of constrained optimization problems, including problems of composite optimization, mathemati- cal programs with polyhedral constraints, as well as problems of extended and classical nonlinear programming with twice continuously differentiable data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.