Abstract

The paper is devoted to full stability of optimal solutions in general settings of finite-dimensional optimization with applications to particular models of constrained optimization problems, including those of conic and specifically semidefinite programming. Developing a new technique of variational analysis and generalized differentiation, we derive second-order characterizations of full stability, in both Lipschitzian and Hölderian settings, and establish their relationships with the conventional notions of strong regularity and strong stability for a large class of problems of constrained optimization with twice continuously differentiable data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.