Abstract

Triangular numbers have been of interest and continuously studied due to their beautiful representations, nice properties, and various links with other figurate numbers. For positive integers n and l, the nth l-isosceles triangular number is a generalization of triangular numbers defined to be the arithmetic sum of the formT(n, l) = 1 + (1 + l) + (1 + 2l) + · · · + (1 + (n − 1)l).In this paper, we focus on characterizations and identities for isosceles triangular numbers as well as their links with other figurate numbers. Recursive formulas for constructions of isosceles triangular numbers are given together with necessary and sufficient conditions for a positive integer to be a sum of isosceles triangular numbers. Various identities for isosceles triangular numbers are established. Results on triangular numbers can be viewed as a special case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.