Abstract
Polycystic ovary syndrome (PCOS) is associated with gut microbiota disturbance. Emerging evidence has shown that gut microbiota plays a major role in the development of PCOS. To better understand how the gut microbiota contributes to the development of PCOS, we investigated the influences of high-fat diet and hyperandrogenism, independently or synergistically, have on the gut microbiota in rats. Furthermore, we explored the associations between gut microbiota and hyperandrogenism or other hallmarks of PCOS. Twenty female SD rats were randomized at aged 3weeks into 4 groups (n = 5, each); HA: PCOS rats fed with ordinary diet; HF: rats with high-fat diet (HFD); HA-HF: PCOS rats fed with HFD; and C: control rats with ordinary diet. PCOS rat model was induced by 5α-dihydrotestosterone (DHT) injection for 6weeks. The fasting blood glucose (FBG), plasma insulin, testosterone, free testosterone, TNF-α, MDA, SOD, LPS, TLR4, TG, TC, HDL-C, and LDL-C levels were measured. The molecular ecology of the fecal gut microbiota was analyzed by 16S rDNA high-throughput sequencing. The results showed that rats in the HA and HA-HF group displayed abnormal estrous cycles with increasing androgen level and exhibited multiple large cysts with diminished granulosa layers in ovarian tissues. Compare with the C group, relative abundance of the Bacteroidetes phylum decreased significantly in the other groups (P < 0.05). The Chao1 was the highest in the group C and significantly higher than the HA-HF group (P < 0.05). T, FT, insulin, MDA, LPS, and TNF-α levels had the negative correlation with the richness of community (Chao1 index) in the gut. The rats in the HF and HA-HF groups tended to have lower Shannon and Simpson indices than the C group (P < 0.01, respectively). However, there were no significant differences between C group and the HA group in the Shannon and Simpson values. Beta diversity analysis was then performed based on a weighted UniFrac analysis. The PCoA plots showed a clear separation of the C group from the other groups. ANOSIM analysis of variance confirmed that there were statistically significant separations between the C group and the HA, HA-HF, and HF groups (P < 0.01, respectively). These results showed that DHT with HFD could lower diversity of the gut microbial community. Both HFD and DHT could shift the overall gut microbial composition and change the composition of the microbial community in gut. Furthermore, our analyses demonstrated that the levels of TG, MDA, TNF-α, LPS, TLR4, T, FT, FINS, and HDL-C were correlated with the changes of in the gut microbiome. HFD and DHT were associated with the development and pathology of PCOS by shaping gut microbial communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.