Abstract

In advanced semiconductor manufacturing, deep hydrophilic nanoholes are found in various applications, which require a wet clean after patterning. In this work, we use an in-situ ATR-FTIR spectroscopy technique to characterize the wetting of nanoholes in a silica matrix by UPW and electrolyte solutions. Wetting was much slower than predicted by a numerical model, while temperature cycling evidenced the formation of unexpectedly stable gas pockets in the wetted nanoholes. Water structuring in the nanoholes was characterized by an analysis of the OH stretching peak. Besides, monitoring the dissolution of CO2 in the wetted nanoholes allowed to compare the diffusivity in the nano-confined solutions with that in bulk solutions. Our results strongly suggest that the gas pockets were stabilized by the decreased gas diffusivity resulting from water structuring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call