Abstract

This paper presents measurements of the scintillation light yield and time profile for a number of concentrations of water-based liquid scintillator, formulated from linear alkylbenzene (LAB) and 2,5-diphenyloxazole (PPO). We find that the scintillation light yield is linear with the concentration of liquid scintillator in water between 1 and 10% with a slope of 127.9pm 17.0 ph/MeV/concentration and an intercept value of 108.3pm 51.0 ph/MeV, the latter being illustrative of non-linearities with concentration at values less than 1%. This is larger than expected from a simple extrapolation of the pure liquid scintillator light yield. The measured time profiles are consistently faster than that of pure liquid scintillator, with rise times less than 250 ps and prompt decay constants in the range of 2.1–2.85 ns. Additionally, the separation between Cherenkov and scintillation light is quantified using cosmic muons in the CHESS experiment for each formulation, demonstrating an improvement in separation at the centimeter scale. Finally, we briefly discuss the prospects for large-scale detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.