Abstract

Thermal energy storage (TES) is seen today as a key technology to reduce the existing gap between energy demand and energy supply in many energy systems. There are, currently, three well known methods to store thermal energy and they are: sensible heat storage (SHS), latent heat storage (LHT) and thermochemical heat storage. Every method has its own thermophysical requirements for the mediums of storage, such as thermal stability, high enthalpy of phase change or reaction, high heat capacity and suitable temperature of the thermal phenomenon for a respective application, among others. In this regard, the composition of materials usually needs to be modified in order to improve their performance or to reach a determined requirement. As a consequence, the costs of potential TES materials to be applied in renewable energy systems are too high to compete with traditional systems using fossil fuels. On the other hand, several wastes and by-products from the non-metallic mining, such as salt hydrates and double salts, are available without any application but accumulating in the mining sites. This is the case for astrakanite (Na2SO4·MgSO4·4H2O) and lithium carnallite (LiCl·MgCl2·7H2O) with no current application, and potassium carnallite (KCl·MgCl2·6H2O) used as a supplementary raw material to obtain KCl. Since the costs of these materials are close to zero, they were characterized as TES materials taking into account the properties required for the three methods of storage. Results showed that astrakanite and potassium carnallite have potential to be applied as thermochemical material at low-medium temperature (<300°C). Also, a dehydrated product obtained from astrakanite showed potential to be applied as phase change material (PCM) at high temperature, from 550°C to 750°C. Nevertheless, lithium carnallite did not show potential to be applied as TES material due to it low thermal stability, presenting partial decomposition below 200°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.