Abstract

Vortex generators (VGs) are an effective way to control flow separation in wind turbine. To understand the mechanism of VGs controlling flow separation, the flow field around airfoil Du97W300 with VGs was simulated and analyzed with CFD tools, and this numerical method is validated through the comparison between the numerical results and the experimental results. Furthermore, the flow fields around airfoil equipped with four different types of VGs are calculated and analyzed. The results show that the helical vortex induced by counter-rotating VGs develop approximately along streamwise direction; these types of VGs can cause a delay in stall and enhance the maximum airfoil lift coefficient. However the helical induced vortex actuated by the co-rotating VGs develop nearly along vortex generator direction and cannot cause a delay in stall effectively. In the counter-rotating VGs, the Q integration (the character parameter of induced vortex) of rectangular is twice of the triangle, and the Q integration of the forward triangle is almost equal to the backward triangle VGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call