Abstract

AbstractExtended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0–10 cm−1) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s−1 with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3–0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call