Abstract

The addition of a local electrode geometry has transformed the conventional atom probe into a high-speed, high sensitivity tool capable of mapping three-dimensional (3D) dopant atom distributions in nanoscale volumes of Si. Fields of view exceeding 100nm in diameter and collection rates exceeding 18×106at.∕h are possible with the local electrode geometry. The 3D evolution of dopants, specifically dopant clustering, grain-boundary segregation, shallow-doped B layers, Ni–Si layers, and preamorphization regions, was analyzed. A 200eV B11 implant in Ge-amorphized Si was mapped. The native surface oxide, 8-nm-deep B-doped layer, and Ge distribution were simultaneously mapped in 3D space. A subsequent Ni silicide process was analyzed to show Ni penetration through the doped layer. In a heavily doped poly-Si sample, a cluster of dimensions 2×7×8nm3 and containing 264 B atoms was identified at the intersection of three grains. This shows that annealing highly overdoped thin poly-Si layers does not facilitate uniformly doped and highly conductive gate contact layers for nanoscale complementary metal-oxide semiconductor transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.