Abstract

In earlier studies, a 75,000-dalton glycoprotein (gp75) has been identified as a component of both low- and high-affinity nerve growth factor (NGF) receptors (NGFRs). Using an amphoteric expression vector, we have introduced the cDNA encoding the human gp75 into two neuroblastoma cell lines. SHEP is a human neuroblastoma cell line that lacks most neuronal characteristics and does not express NGFRs. The transformant line SHEP/NGFR expressed a single affinity class of NGF binding sites, did not display NGF-induced up-regulation of fos oncogene expression, and did not efficiently internalize NGF. LAN5 is a neuroblastoma cell line with neuronal characteristics, including expression of neurofilament and display of short neurites. This cell line expresses a small number of high-affinity NGFRs but no detectable low-affinity sites. The transformant line LAN5/NGFR expressed both high- and low-affinity NGFRs, displayed NGF-induced up-regulation of fos oncogene, and efficiently internalized NGF. The number of high-affinity NGF binding sites was nearly the same for LAN5 and LAN5/NGFR, a finding suggesting that there is a limiting number of some separately coded factor or subunit that is required for high-affinity NGFRs. Because NGF induction of fos oncogene expression correlated with expression of high-affinity NGFRs, the putative second factor may also limit NGF responsiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.