Abstract

Rotational spectra of two different structural forms of the 1:1 weak complex between vinyl fluoride (C2H3F) and carbon dioxide were measured using 480 MHz bandwidth chirped-pulse and resonant cavity Fourier-transform microwave spectroscopy in the 5-17 GHz region. Both structures have the CO2 molecule situated in the plane of the vinyl fluoride, such that the CO2 is interacting either with a CHF side or with a HC═CF edge of the vinyl fluoride subunit. Both observed structures are close to those predicted by ab initio geometry optimizations (corrected for basis set superposition error) at the MP2/6-311++G(2d,2p) level. Dipole moment measurements and structural fits, including determinations of principal axis coordinates for all three carbon atoms, confirm the geometries of the assigned species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call