Abstract

Modern network-on-chip (NoC) hardware is an emerging target for side-channel security attacks. A recent work implemented and characterized timing-based software side-channel attacks that target NoC hardware on a real multicore machine. This article studies the impact of system noise on prior attack setups and shows that high noise is sufficient to defeat the attacker. We propose an information theory-based attack setup that uses repetition codes and differential signaling techniques to de-noise the unwanted noise from the NoC channel to successfully implement a practical covert-communication attack on a real multicore machine. The evaluation demonstrates an attack efficacy of 97%, 88%, and 78% under low, medium, and high external noise, respectively. Our attack characterization reveals that noise-based mitigation schemes are inadequate to prevent practical covert communication, and thus isolation-based mitigation schemes must be considered to ensure strong security. Isolation-based schemes are shown to mitigate timing-based side-channel attacks. However, their impact on the performance of real-world security critical workloads is not well understood in the literature. This article evaluates the performance implications of state-of-the-art spatial and temporal isolation schemes. The performance impact is shown to range from 2–3% for a set of graph and machine learning workloads, thus making isolation-based mitigations practical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call