Abstract

Thorium (Th) exposure to the human beings is a radiochemical hazard and the chelation therapy by suitable drugs is the major prevention approach to deal with. The present studies aimed at usage of pyrazinoic acid (PCA), which is a prodrug to treat tuberculosis, for its usage as decorporating agent for thorium from human body. The present studies provide a comprehensive knowledge on the chemical interaction and biological efficacy of pyrazinoic acid (PCA) for decorporation of Thorium from the human body. The thermodynamic parameters for Th-PCA speciation are determined by both experiment and theory. The potentiometric data analysis and Electro-Spray Ionization Mass Spectrometry (ESI-MS) studies revealed the formation of MLi (i = 1–4) species with the decrease in stepwise stability constants. All the species formations are endothermic reactions and are predominantly entropy-driven. Biological experiments using human erythrocytes, whole blood and normal human lung cells showed cytocompatibility and decorporation ability of PCA for Thorium. Density functional calculations have been carried out to get insights on interaction process at molecular level. The experimental results and theoretical predictions found to be in line with each other. Present findings on complexation of Th by PCA and its evaluation in human cells and blood would further motivate determination of its safety levels and decorporation efficacy in animal models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call