Abstract
Polyamidoamine (PAMAM) dendrimers are highly branched spherical polymers that have emerged as potent synthetic drug and gene carriers; however, much remains to be learned about the mechanism of dendrimer-mediated cellular uptake. In this study, the endocytic pathway and intracellular trafficking of generation 4 (G4) PAMAM dendrimers were evaluated via fluorescein isothiocyanate (FITC) conjugation. We found that the G4-FITC dendrimers were internalized by energy-dependent and non-specific endocytic pathways. Interesting, G4-FITC dendrimers can not only buffer the endosomal/lysosomal pH but also co-localize with lysosomal markers over a period of 3 to 12 h, after which the signal decreased in the lysosomes and began to co-localize with the mitochondrial marker. This study contributes to the understanding of the molecular behaviour of G4 PAMAM dendrimers in a cellular environment and will facilitate the development of more effective PAMAM-mediated drug and gene delivery systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have