Abstract
Production of the phytotoxins syringomycin and syringopeptin by Pseudomonas syringae pv. syringae is controlled by the regulatory genes salA and syrF. Analysis with 70-mer oligonucleotide microarrays established that the syr-syp genes responsible for synthesis and secretion of syringomycin and syringopeptin belong to the SyrF regulon. Vector pMEKm12 was successfully used to express both SalA and SyrF proteins fused to a maltose-binding protein (MBP) in Escherichia coli and P. syringae pv. syringae. Both the MBP-SalA and MBP-SyrF fusion proteins were purified by maltose affinity chromatography. Gel shift analysis revealed that the purified MBP-SyrF, but not the MBP-SalA fusion protein, bound to a 262-bp fragment of the syrB1 promoter region containing the syr-syp box. Purified MBP-SalA caused a shift of a 324-bp band containing the putative syrF promoter. Gel filtration analysis and cross-linking experiments indicated that both SalA and SyrF form homodimers in vitro. Overexpression of the N-terminal regions of SalA and SyrF resulted in decreased syringomycin production by strain B301D and reduced levels of beta-glucuronidase activities of the sypA::uidA and syrB1::uidA reporters by 59% to 74%. The effect of SalA on the expression of the syr-syp genes is mediated by SyrF, which activates the syr-syp genes by directly binding to the promoter regions. Both SalA and SyrF resemble other LuxR family proteins in dimerization and interaction with promoter regions of target genes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have