Abstract

The cytoplasmic domain of erythrocyte membrane band 3 (cdb3) serves as a center of membrane organization, interacting with such proteins as ankyrin, protein 4.1, protein 4.2, hemoglobin, several glycolytic enzymes, and a tyrosine kinase, p72syk. cdb3 exists in a reversible, pH-dependent conformational equilibrium characterized by large changes in Stokes radius (11 A) and intrinsic fluorescence (2-fold). Based on the crystallographic structure of the cdb3 dimer, we hypothesized that the above conformational equilibrium might involve the movement of flanking peripheral protein binding domains away from a shared dimerization domain. To test this hypothesis, we have mutated both donor (W105L) and acceptor (D316A) residues of a prominent H bond that bridges the above two domains and have examined the effect on the resulting conformational equilibrium. Analysis of the intrinsic fluorescence, Stokes radius, thermal stability, urea stability, and segmental mobility of these mutants reveals that the above H bond is indeed present in the low pH conformation of cdb3 and broken in a higher pH conformation. The data further reveal that cdb3 exists in three native pH-dependent conformations and that rupture of the aforementioned H bond occurs only during conversion of the low pH conformation to the mid-pH conformation. Conversion of the mid-pH conformation to the high pH conformation would now appear to involve structural changes primarily in the peripheral protein binding domain. Because ankyrin associates avidly with the low pH conformation of cdb3, ankyrin occupancy should strongly influence this structural equilibrium and thereby affect band 3 and perhaps global membrane properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.