Abstract

To identify the differences that account for the acid sensitivity of Lactobacillus casei ΔRR12. RR12 controls the expression of the dlt operon, and its inactivation leads to a diminished teichoic acid D-alanylation activity. To this end, a comparison of its response of ΔRR12 to low pH with the parental strain Lact. casei BL23 was carried out. The ability to induce an acid tolerance response (ATR), fatty acid (FA) composition and proteome changes induced in both strains in response to acid were investigated. Results obtained showed that both strains induce a growth-phase-dependent ATR. However, significant differences in the content of FAs and membrane-associated proteins were detected. The greater abundance of cytoplasmic proteins in the membrane fraction of the mutant strain ΔRR12 suggests an increased permeability of the cell membrane in this strain. The analysis of the response to low pH of strain ΔRR12 indicated that the inactivation of TCS12 affected the content of FAs and proteins associated to the cell envelope. Increased abundance of cytoplasmic proteins suggested that low alanylation of teichoic acids affected the permeability of the cell membrane and possibly accounts for the acid sensitivity of strain ΔRR12.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call