Abstract

We investigated the effects of the concentration of naphthalene sulphonic acids (NSAs) as anionic test compounds in the injected sample and of the salt additives to the mobile phase on ion-exclusion. The retention behaviour of NSAs sensitively reflects even minor changes in the ionic and hydrophobic interactions and can be useful for predicting the effects of the stationary phases in reversed-phase chromatography of polar and ionic compounds, both small ones and biopolymers, e.g., oligonucleotides. We studied chromatographic properties of several stationary phases intended for separations in aqueous mobile phases: a C18 column end-capped with polar hydrophilic groups, a densely bonded C8 column doubly end-capped with short alkyl groups, a short alkyl stationary phase designed to keep full pore accessibility in highly-aqueous mobile phases and a Bidentate column with “bridged” C18 groups attached to the silica hydride support. The chemistry and pore structure of various types of column packing materials and of the salt additives to the mobile phase affect the proportion of the pore volume non-accessible to anions due to ion-exclusion and consequently the peak asymmetry and hydrophobic selectivity in reversed-phase chromatography of organic acids. We also addressed the problems connected with the determination of column hold-up volume in aqueous mobile phases. The accessibility of the stationary phase for anionic compounds in contact with the sample zone is affected by ion-exclusion due to repulsive interactions with the negatively charged surface in the pores of the stationary phase. The accessible part of the stationary phase increases and consequently the migration velocity along the column decreases with increasing concentration of the sample in the zone moving along the column. Because of a limited access to the stationary phase, its capacity can be easily overloaded. The combination of the column overload and ion-exclusion effects may result in fronting or tailing peak asymmetry. To explain this behaviour, we proposed a modified Langmuir model, respecting the variation of the column capacity due to the effects of sample concentration on ion-exclusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call