Abstract

BackgroundProtein-O-mannosyltransferases (Pmt's) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins.Methodology/Principal FindingsBased on protein similarities, this highly conserved protein family can be divided into three subfamilies: the Pmt1 sub-family, the Pmt2 sub-family and the Pmt4 sub-family. In contrast to Saccharomyces cerevisiae and Candida albicans, but similar to filamentous fungi, three putative PMT genes (PMT1, PMT2, and PMT4) were identified in the genome of the human fungal pathogen Cryptococcus neoformans. Similar to Schizosaccharomyces pombe and C. albicans, C. neoformans PMT2 is an essential gene. In contrast, the pmt1 and pmt4 single mutants are viable; however, the pmt1/pmt4 deletions are synthetically lethal. Mutation of PMT1 and PMT4 resulted in distinct defects in cell morphology and cell integrity. The pmt1 mutant was more susceptible to SDS medium than wild-type strains and the mutant cells were enlarged. The pmt4 mutant grew poorly on high salt medium and demonstrated abnormal septum formation and defects in cell separation. Interestingly, the pmt1 and pmt4 mutants demonstrated variety-specific differences in the levels of susceptibility to osmotic and cell wall stress. Delayed melanin production in the pmt4 mutant was the only alteration of classical virulence-associated phenotypes. However, the pmt1 and pmt4 mutants showed attenuated virulence in a murine inhalation model of cryptococcosis.Conclusion/SignificanceThese findings suggest that C. neoformans protein-O-mannosyltransferases play a crucial role in maintaining cell morphology, and that reduced protein-O-glycosylation leads to alterations in stress resistance, cell wall composition, cell integrity, and survival within the host.

Highlights

  • Protein-O-glycosylation is an essential, evolutionary conserved protein modification that has been studied extensively in the yeasts Saccharomyces cerevisiae and Candida albicans

  • Conclusion/Significance: These findings suggest that C. neoformans protein-O-mannosyltransferases play a crucial role in maintaining cell morphology, and that reduced protein-O-glycosylation leads to alterations in stress resistance, cell wall composition, cell integrity, and survival within the host

  • Three PMT genes are present in C. neoformans Fungal genomes typically contain multiple genes encoding protein-O-mannosyltransferases

Read more

Summary

Introduction

Protein-O-glycosylation is an essential, evolutionary conserved protein modification that has been studied extensively in the yeasts Saccharomyces cerevisiae and Candida albicans. Protein-O-glycosylation is initiated at the luminal side of the endoplasmic reticulum (ER) by the addition of a mannosyl residue to specific serine/threonine residues of proteins entering the secretory pathway [9,10]. This first modification is derived from the polyisoprenoid carrier lipid dolichyl phosphate-activated mannose (Dol-P-Man), followed by the addition of short, linear, mannosyl-rich glycans. Protein-O-mannosyltransferases (Pmt’s) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call