Abstract

Cell morphogenesis is of fundamental significance in all eukaryotes for development, differentiation, and cell proliferation. In fission yeast, Drosophila Furry-like Mor2 plays an essential role in cell morphogenesis in concert with the NDR/Tricornered kinase Orb6. Mutations of these genes result in the loss of cell polarity. Here we show that the conserved proteins, MO25-like Pmo25, GC kinase Nak1, Mor2, and Orb6, constitute a morphogenesis network that is important for polarity control and cell separation. Intriguingly, Pmo25 was localized at the mitotic spindle pole bodies (SPBs) and then underwent translocation to the dividing medial region upon cytokinesis. Pmo25 formed a complex with Nak1 and was required for both the localization and kinase activity of Nak1. Pmo25 and Nak1 in turn were essential for Orb6 kinase activity. Further, the Pmo25 localization at the SPBs and the Nak1-Orb6 kinase activities during interphase were under the control of the Cdc7 and Sid1 kinases in the septation initiation network (SIN), suggesting a functional linkage between SIN and the network for cell morphogenesis/separation following cytokinesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.