Abstract

AbstractThe objectives of this study were to investigate the effects of rainfall and underlying surface conditions on nonpoint source (NPS) pollution loads and to identify the uncertainty in NPS pollution loads at different spatial scales in the Fuxi River basin, China. Data on monitored daily flow rates and concentrations of ammonium nitrogen, total nitrogen, total phosphorus and permanganate index at the sub‐basin and basin scales were collected for a period from 2013 to 2015. Dynamic time warping distance and information measures were used to characterize pollution loads and determine the uncertainties. The results indicate that, at both sub‐basin and basin scales, NPS pollution loads increased nonlinearly with rainfall until it reached 38.4 mm, and subsequently, the NPS pollution loads stabilized. The underlying surface conditions affected the NPS pollution loads more profoundly than rainfall. Additionally, the uncertainty in NPS pollution loads increased with the spatial scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.