Abstract
It is still unclear which role space charge layers (SCLs) play within an all-solid-state battery during operation with high current densities, as well as to which extent they form. Herein, we use a solid electrolyte with a known SCL formation and investigate it in a symmetric cell under non-blocking conditions with Li metal electrodes. Since the used LICGC™ electrolyte is known for its instability against lithium, it is protected from rapid degradation by nanometer-thin layers of TiOx deployed by atomic layer deposition. Close attention is given to the interfacial properties, as now additional Li+ can traverse through the interface depending on the applied bias potential. The interlayer's impedance response shows efficient lithium-ion conduction for low bias potentials and a diffusion-limiting effect towards high positive and negative potentials. SCLs grow up to a thickness of 5.1 μm. Additionally, estimating the apparent rate constant of the charge transfer across the interface indicates that the potentials where kinetics are hindered coincide with the widest SCLs. In conclusion, the investigation under higher steady-state currents was only possible because of the improved stability due to the interlayer. No chemo-physical failure could be observed after 800+ hours of cycling. However, an ex-situ SEM study shows a new phase at the interface, which grows into the electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.