Abstract
The inhibition of high-affinity choline transport by hemicholinium mustard (HCM), an alkylating analogue of hemicholinium-3, was examined in rat brain synaptosomes and guinea pig myenteric plexus. In synaptosomes, 50% high-affinity choline transport inhibition occurs with an HCM concentration of 104 nM (4-min incubation). A 10-min preincubation with 10 microM HCM results in essentially complete (greater than 95%) inactivation that persists after washing. Low-affinity choline transport in synaptosomes is unaffected by HCM inhibition at all concentrations examined (1-50 microM). Time course experiments indicate that the maximum irreversible inhibition (58%) seen after a 1-min preincubation with 500 nM HCM decreases to 46% inhibition after a 15-min preincubation; however, analysis of variance reveals that this difference is not significant. HCM inhibition of acetylcholine release from myenteric plexus-longitudinal muscle preparations persists for at least 2 h after removal of drug from the incubation bath; this inactivation can be prevented by coincubation with a high choline concentration during treatment with the mustard. In contrast, inhibition produced by the parent compound hemicholinium-3 is largely reversed by washing in both preparations examined. The observed potency and selectivity of HCM suggest its usefulness as a covalent probe for high-affinity choline transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.