Abstract
Choline mustard aziridinium is a potent, irreversible and selective blocker of sodium-dependent, high-affinity transport of choline into rat forebrain synaptosomes; it was found to be 30 times less potent against low-affinity transport of choline. The IC50 value for high-affinity transport was 0.94 microM, compared to 29 microM for low-affinity uptake. The inhibitory action of choline mustard aziridinium ion on high-affinity transport of choline was graded with respect to time; a 12-fold increase in potency was obtained by increasing the inhibitor preincubation times from 1 to 30 min. Low concentrations of choline mustard aziridinium ion could produce significant blockade of choline carriers providing the exposure time was prolonged. The characteristics of the blockade of synaptosomal high-affinity choline transport by choline mustard aziridinium ion also changed depending upon preincubation time. The kinetics of inhibition of high-affinity choline transport by choline mustard aziridinium ion showed apparent competitive inhibition initially, followed by noncompetitive characteristics at longer preincubations with inhibitor. The rate of irreversible inhibition of carriers by this nitrogen mustard analogue would appear to be rapid; the rate constant was determined to be 5 X 10(-2) s-1 for micromolar concentrations of inhibitor. This action may preclude the transport of the mustard analogue into the nerve terminal, although initially some reversible binding with the carrier may result in the translocation of some choline mustard aziridinium ion into the presynaptic ending. The progressive alkylation of high-affinity carriers by the analogue could indicate the presence of excess carrier sites in the presynaptic membrane, or subpopulations of carriers in an inactive state in equilibrium with active carriers. A model is described for the inhibitory action of choline mustard aziridinium ion on synaptosomal high-affinity choline carriers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.