Abstract
Amyloid β (Aβ) peptides and metal ions have been associated with the pathogenesis of Alzheimer's disease. The conformational space of Aβ fragments of different length with and without binding of metal ions has been extensively investigated by replica-exchange molecular dynamics (REMD) simulation. However, only trajectories extracted at relatively low temperatures have been used for this analysis. The capability of REMD simulations to characterize the internal dynamics of such intrinsically disordered proteins (IDPs) as Aβ has been overlooked. In this work, we use an approach recently developed by Xue and Skrynnikov (J Am Chem Soc 133:14614-14628, 2011) to calculate NMR observables, including (15)N relaxation rates and (15)N-(1)H nuclear Overhauser enhancement (NOE), from the high-temperature trajectory of REMD simulations for zinc-bound Aβ peptides. The time axis of the trajectory was rescaled to correct for the effect of the high temperature (408K) compared with the experimental temperature (278K). Near-quantitative agreement between simulated values and experimental results was obtained. When the structural properties and free-energy surfaces of zinc-bound Aβ(1-40) and Aβ(1-42) were compared at the physiological temperature 310K it was found that zinc-bound Aβ(1-42) was more rigid than Aβ(1-40) at the C terminus, and its conformational transitions were also more preferred. The self-consistent results derived from trajectories at high and low temperatures demonstrate the capability of REMD simulations to capture the internal dynamics of IDPs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have