Abstract

In the present study, the metabolic profile of amlodipine, a well-known calcium channel blocker, was investigated employing liquid chromatography–mass spectrometric (LC/MS) techniques. Two different types of mass spectrometers – a triple-quadrupole (QqQ) and a quadrupole time-of-flight (Q-TOF) mass spectrometer – were utilized to acquire structural information on amlodipine metabolites. The metabolites were produced by incubation of amlodipine with primary cultures of rat hepatocytes. Incubations from rat hepatocytes were analyzed with LC–MS/MS, and 21 phase I and phase II metabolites were detected. Their product ion spectra were acquired and interpreted, and structures were proposed. Accurate mass measurement using LC-Q-TOF was used to determine the elemental composition of metabolites and thus to confirm the proposed structures of these metabolites. Mainly phase I metabolic changes were observed including dehydrogenation of the dihydropyridine core, as well as reactions of side chains, such as hydrolysis of ester bonds, hydroxylation, N-acetylation, oxidative deamination, and their combinations. The only phase II metabolite detected was the glucuronide of a dehydrogenated, deaminated metabolite of amlodipine. We propose several in vitro metabolic pathways of amlodipine in rat, based on our analysis of the metabolites detected and characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.