Abstract

• Enterococcus was the most abundant in the gut of S. exigua larvae. • The temperature stress had certain effects on the microbial composition of S. exigua. • The symbiotic bacteria in S. exigua were more sensitive to low temperatures. The gut microbiota is critical for energy and nutrient utilization and plays a role in host immunity in response to environmental changes. The beet armyworm Spodoptera exigua is a worldwide polyphagous agricultural pest and has frequently experienced potentially stressful temperature fluctuations under natural environmental conditions. However, little is known about the effects of thermal stress on the gut microbiome of this moth pest. Therefore, we investigated the gut microbiome variations, composition and community structure of S. exigua among low-temperature (10 °C), control (26 °C) and high temperature (35 °C) treatments using 16S amplicon sequencing. Overall, 1,192,707 high-quality reads and 762 operational taxonomic units (OTUs) were detected from 15 samples. A total of 289 genera belonging to 19 bacterial phyla were captured, with Firmicutes and Proteobacteria being the most prominent phyla. Alpha diversity metrics indicated no significant differences in the gut bacterial diversity of S. exigua among the three temperature treatments. Principal coordinates and hierarchical cluster analysis revealed significant differences in the structure of gut microbiota between the low-temperature treatment and the other two temperature treatments. In addition, PICRUSt2 analysis demonstrated that the predicted metagenomes associated with the gut microbiome were amino carbohydrate transport and metabolism, acid transport and metabolism, inorganic ion transport and metabolism and cellular processes. Our study showed that thermal stress induced changes in the gut microbiome of the beet armyworm, which may contribute to better understanding the ecological adaptation of S. exigua under changing temperature trends and to evaluating the use of gut microorganisms as biocontrol agents for this pest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call