Abstract
To investigate the molecular changes that might have occurred in genes for pyruvate,orthophosphate dikinase (PPDK) during the evolution of C4 plants from C3 plants, we isolated a full-length cDNA and the corresponding gene for a C4-like PPDK from rice, a C3 gramineous plant and compared their structures and promoter activities to those of the corresponding gene from maize, a C4 gramineous plant. As in maize, there are at least two ppdk genes in rice and one of them was very similar to the maize C4-type ppdk. The deduced amino acid sequence of the rice PPDK was 88% homologous to the maize C4-type PPDK in the mature peptide region and 56% homologous in the transit peptide region. The C4-like ppdk in rice contained 21 exons, which were interrupted by twenty introns, and the positions of the introns were essentially the same as those in the gene from maize, with the except in that the gene from rice had two extra introns. Such extra introns were also found in the C4-type ppdk from a dicot, Flaveria, at the same positions. These results strongly suggest that the two introns were present in an ancestral gene before the divergence of monocot and dicot plants. The C4-like ppdk in rice contained two functionally independent promoters had generated a larger transcript with the transit peptide region and a smaller transcript without this region. The unusual dual-promoter system for transcription has been conserved in the C4-type ppdk gene from maize, indicating that the dual-promoter system is a common feature of ppdk genes in both C3 and C4 plants. The patterns of expression of the two transcripts in rice were different: the larger transcript was expressed exclusively in green leaves at a low level whereas the smaller transcript was expressed in some reproductive organs at a high level. Essentially the same patterns of expression were observed in maize, but the level of expression of the larger transcript in maize green leaves was much higher than that in green leaves of rice. The promoter activities of the rice and maize genes for PPDK were examined directly in a transient expression assay in maize mesophyll protoplasts after electroporation with promoter::beta-glucuronidase chimeric genes. The rice promoter for the smaller transcript was very active in the protoplasts but the rice promoter for the larger transcript had relatively low activity. By contrast, both promoters of the maize gene had high activity. Taken together, these results demonstrate that the rice C4-like ppdk is very similar to the maize C4-type ppdk, not only in terms of primary structure but also in terms of the regulation of expression, with the exception that the strength of the maize promoter for the larger transcript is higher. The results strongly suggest that the genetic alterations required to give rise to the C4-type ppdk gene were relatively limited.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have